

Welcome to json-five’s documentation!

GitHub [https://github.com/spyoungtech/json-five]

Contents:

	QuickStart
	Installation

	Basic Usage

	Extending json-five
	The json way

	Custom Loaders and Dumpers

	Other loaders/dumpers and tools

	How this package works
	Deserializing JSON to Python; the journey

	Serializing to JSON

	Working with comments; round-trip support

Indices and tables

	Index

	Module Index

	Search Page

QuickStart

Installation

pip install json-five

Basic Usage

Suppose you have a JSON5 compliant file my-json-file.json

// This is a JSON5 file!
{'foo': 'bar'}

You can load this file to Python like so:

import json5
with open('my-json-file.json') as f:
 data = json5.load(f)

You can also work directly with strings

import json5
json_string = '{json5 /* identifiers dont need quotes */: "values do though"}'
data = json5.loads(json_string)

Want to do more? Check out Extending json-five to dive deeper!

Extending json-five

The json way

json5.load and json5.loads support a similar interface to the stdlib json module. Specifically,
you can provide the following arguments that have the same meaning as in json.load:

	parse_int

	parse_float

	parse_constant

	object_hook

	object_pairs_hook

This is convenient if you have existing code that uses these arguments with the json module, but want to also
support JSON5. These options are also useful as a simple way to customize parsing of json types.

Additionally, a new hook keyword argument, parse_json5_identifiers, is available to help users control the
output of parsing identifiers. By default, JSON5 Identifiers in object keys are returned as a JsonIdentifier object,
which is a subclass of str (meaning it’s compatible anywhere str is accepted).
This helps keep keys the same round-trip, rather than converting unquoted identifiers into quoted strings, such that
dumps(loads(text)) == text (in this case).

You can change this behavior with the parse_json5_identifiers keyword argument with a callable that receives the JsonIdentifier object
and its return value is used instead. For example, you can specify parse_json5_identifiers=str to convert identifiers
to normal strings, such that dumps(loads('{foo: "bar"}')) == '{"foo": "bar"}'.

However, this package does not support the cls keyword found in the standard library json module.
If you want to implement custom serializers/deserializers, read on about custom loaders/dumpers.

Custom Loaders and Dumpers

This package uses “Loaders” as part of the deserialization of JSON text to Python. “Dumpers” are used to
serialize Python objects to JSON text.

The entry points for loaders and dumpers are the load and dump methods, respectively.
You can override these methods to implement custom loading of models or dumping of objects.

Extending the default loader

The default loader takes in a model and produces, in the default case, Python objects.

As a simple example, you can extend the default loader with your own to customize loading of lists. Here,
I’ll create a custom loader that, when it encounters an array (json5.model.JSONArray) with with only one value, it will return
the single value, rather than a single-item array.

from json5.loader import DefaultLoader, loads
from json5.model import JSONArray

class MyCustomLoader(DefaultLoader):
 def load(self, node):
 if isinstance(node, JSONArray):
 return self.json_array_to_python(node)
 else:
 return super().load(node)

 def json_array_to_python(self, node):
 if len(node.values) == 1:
 return self.load(node.values[0])
 else:
 return super().json_array_to_python(node)

The loads function accepts a loader keyword argument, where the custom loader can be passed in.

json_string = "{foo: ['bar', 'baz'], bacon: ['eggs']}"
loads(json_string) # Using the regular default loader
{'foo': ['bar', 'baz'], 'bacon': ['eggs']}

loads(json_string, loader=MyCustomLoader()) # use the custom loader instead
{'foo': ['bar', 'baz'], 'bacon': 'eggs'}

Extending the default dumper

Extending the dumper follows a similar principle as extending the loader.

As an example, I’ll make a custom dumper that dumps booleans True and False to integers instead of the
JSON true or false.

from json5.dumper import DefaultDumper, dumps

class MyCustomDumper(DefaultDumper):
 def dump(self, node):
 if isinstance(node, bool):
 return self.bool_to_json(node)
 else:
 return super().dump(node)

 def bool_to_json(self, node):
 super().dump(int(node.value))

And you can see the effects

>>> dumps([True, False])
'[true, false]'
>>> dumps([True, False], dumper=MyCustomDumper())
'[1, 2]'

Other loaders/dumpers and tools

Besides the default loader, there is also the ModelLoader which simply returns the raw model
with no additional processing.

Besides the default dumper, there is also the ModelDumper which takes a model and serializes it to JSON.

The json5.dumper.modelize function can take python objects and convert them to a model.

from json5.dumper import modelize
obj = ['foo', 123, True]
modelize(obj)

The resulting model:

JSONArray(
 values=[
 SingleQuotedString(characters='foo', raw_value="'foo'"),
 Integer(raw_value='123', value=123, is_hex=False),
 BooleanLiteral(value=True),
],
 trailing_comma=None,
)

How this package works

This is an overview of how the internals of this package work. The code demonstrated here is not
necessarily intended to be used by users!

If you’re wondering how to use this package, see QuickStart instead.

Deserializing JSON to Python; the journey

The first step in deserialization is tokenizing. Text, assuming it is conforming to the JSON5 spec,
is parsed into _tokens_. The tokens are then _parsed_ to produce a representative _model_ of the JSON structure.
Finally, that model is _loaded_ where each node in the model is turned into an instance of a Python data type.

Let’s explore this process interactively.

tokenizing

Tokenizing is the first step in turning JSON text into Python objects. Let’s look at tokenizing
a very simple empty JSON object {}

>>> from json5.tokenizer import tokenize
>>> json_string = "{}"
>>> tokens = tokenize(json_string)
>>> for token in tokens:
... print(token)
...
Token(type='LBRACE', value='{', lineno=1, index=0)
Token(type='RBRACE', value='}', lineno=1, index=1)

As you can see, this broke down into two tokens: the left brace and the right brace.

For good measure, let’s see a slightly more complex tokenization

for token in tokenize("{foo: 'bar'}"):
 print(token)

Token(type='LBRACE', value='{', lineno=1, index=0)
Token(type='NAME', value='foo', lineno=1, index=1)
Token(type='COLON', value=':', lineno=1, index=4)
Token(type='WHITESPACE', value=' ', lineno=1, index=5)
Token(type='SINGLE_QUOTE_STRING', value="'bar'", lineno=1, index=6)
Token(type='RBRACE', value='}', lineno=1, index=11)

These tokens will be used to build a model in the next step.

Parsing and models

As the text is processed into tokens, the stream of tokens is parsed into a model representing the JSON structure.

Let’s start with the same simple example of an empty JSON object {}

>>> from json5.tokenizer import tokenize
>>> from json5.parser import parse_tokens
>>> tokens = tokenize("{}")
>>> model = parse_tokens(tokens)
>>> model
JSONText(value=JSONObject(key_value_pairs=[], trailing_comma=None))

The tokens were parsed to produce a model. Each production (part) in the model more or less represents a part of the
JSON5 grammar [https://spec.json5.org/#grammar]. JSONText is always the root production of the model for any JSON5 document.

Let’s look at a more complex model for the JSON text {foo: 0xC0FFEE} – This model has been ‘prettified’ for this doc:

JSONText(
 value=JSONObject(
 key_value_pairs=[
 KeyValuePair(
 key=Identifier(name='foo'),
 value=Integer(raw_value='0xC0FFEE', value=12648430, is_hex=True),
)
],
 trailing_comma=None,
)
)

You can also build model objects ‘manually’ without any source text.

from json5.model import *
model = JSONText(value=JSONObject(KeyValuePair(key=Identifier('bacon'), value=Infinity())))

Loading

Once we have a model in-hand, we can use it to generate Python object representation from the model. To do this,
specialized classes, called Loaders, are used. Loaders take a model and produce something else, like Python data types.

In this example, we’ll just create a model instead of parsing one from text and turn it into Python using the
default loader (the default loader is used when calling loads by default.

>>> from json5.loader import DefaultLoader
>>> from json5.model import *
>>> loader = DefaultLoader()
>>> model = JSONText(value=JSONObject(KeyValuePair(key=Identifier('bacon'), value=Infinity())))
>>> loader.load(model)
{'bacon': inf}

Serializing to JSON

Objects can be serialized to JSON using _dumpers_. A dumper takes and object and writes JSON text representing the object.
The default dumper dumps python objects directly to JSON text.

>>> from json5 import dumps
>>> dumps(['foo', 'bar', 'baz'])
'["foo", "bar", "baz"]'

Working with comments; round-trip support

In order to work with comments, you must work with the raw model.

Each node in the model has two special attributes: .wsc_before and .wsc_after. These attributes are a list of
any whitespace or comments that appear before or after the node.

from json5.loader import loads, ModelLoader
from json5.dumper import dumps, ModelDumper
from json5.model import BlockComment
json_string = """{"foo": "bar"}"""
model = loads(json_string, loader=ModelLoader())
print(model.value.key_value_pairs[0].value.wsc_before) # [' ']
model.value.key_value_pairs[0].key.wsc_before.append(BlockComment("/* comment */"))
dumps(model, dumper=ModelDumper()) # '{/* comment */"foo": "bar"}'

This section will be expanded with time, the API for working with comments will likely change alot in future
versions.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to json-five’s documentation!

 		
 QuickStart

 		
 Installation

 		
 Basic Usage

 		
 Extending json-five

 		
 The json way

 		
 Custom Loaders and Dumpers

 		
 Extending the default loader

 		
 Extending the default dumper

 		
 Other loaders/dumpers and tools

 		
 How this package works

 		
 Deserializing JSON to Python; the journey

 		
 tokenizing

 		
 Parsing and models

 		
 Loading

 		
 Serializing to JSON

 		
 Working with comments; round-trip support

_static/plus.png

_static/file.png

_static/minus.png

